LINEAR EQUATIONS

Standard Form

\[Ax + By = C \quad \text{A, B, C are integers} \]

Slope-Intercept Form

\[y = mx + b \quad \text{Slope is m and y-intercept (0, b)} \]

Point-Slope Form

\[y - y_1 = m(x - x_1) \quad \text{Slope is m. Line passes through } (x_1, y_1) \]

Horizontal Line

\[y = b \]

Slope is zero and y-intercept (0, b)

Vertical Line

\[x = a \]

Slope is undefined and x-intercept (a, 0)

COORDINATE GEOMETRY

Let \((x_1, y_1)\) and \((x_2, y_2)\) be two order pairs

Slope

\[m = \frac{y_2 - y_1}{x_2 - x_1} \quad x_2 \neq x_1 \]

Midpoint

\[\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \]

Distance

\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Distance Travel

\[d = rt \quad \text{distance} = \text{rate} \times \text{time} \]

Pythagorean Theorem

\[a^2 + b^2 = c^2 \]
QUADRATIC EQUATIONS

Standard Form

\[f(x) = ax^2 + bx + c \]

Vertex Form

\[f(x) = a(x - h)^2 + k \]

\[\left(\frac{-b}{2a}, f \left(\frac{-b}{2a} \right) \right) \quad \text{vertex} \]

\[x = \frac{-b}{2a} \quad \text{axis of symmetry} \]

Find the y-intercept by evaluating \(f(0) \)

\[(0, f(0)) \quad \text{y-intercept} \]

If \(a \) is positive the graph opens up \(\uparrow \)

If \(a \) is negative the graph opens down \(\downarrow \)

x-intercepts/zeroes/roots/solutions

Find the x-intercepts by factoring or using the quadratic formula

\[ax^2 + bx + c = 0 \]

Quadratic Formula

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Special Factoring

Difference of Squares

\[A^2 - B^2 = (A + B)(A - B) \]

Perfect Square Trinomials

\[A^2 + 2AB + B^2 = (A + B)^2 \]

\[A^2 - 2AB + B^2 = (A - B)^2 \]

Difference of Cubes

\[A^3 - B^3 = (A - B)(A^2 + AB + B^2) \]

Sum of Cubes

\[A^3 + B^3 = (A + B)(A^2 - AB + B^2) \]